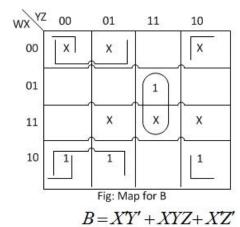

Design an excess-3 code to BCD converter

We know that, excess-3 code begins with the binary 0011(decimal 3) and it will continue up to binary 1100(decimal 12) where I get the output binary 1001(decimal 9) for input binary 1100(decimal 12). So I need 4 variables as inputs and 4 variables as outputs. With 4 variables I can represent 16 binary values from 0000 to 1111. Since I do not use 0, 1, 2, 13, 14, 15 as inputs, when I simplify the output function I use those terms as don't care conditions.


Truth Table:

Inputs				Outputs			
W	Х	Υ	Z	A	В	С	D
0	o	1	1				
0	_1	_ 0	_ 0 _		_ 0_	_ 0_	_ 1
0	1	0	1	0	0	_ 1	0
0	_ 1	_ 1	0	0	0	_ 1	_ 1
0	_ 1	_ 1	1	0	1	_ 0	0
1	0	٥	0	0	1	_ 0	1
1	0	0	1	0	_ 1	_ 1	0
1	0	1	0	0	1	_ 1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

A = WX + WYZ

AZ	00	01	11	10
00	х	X		X
01		1		1
11		X	Х	X
10		1		1

Fig: Map for C C = Y'Z + YZ'OR $C = Y \oplus Z$

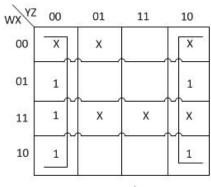


Fig: Map for D D = Z'